377 research outputs found

    New insights into the treatment and pathophysiology of fibrostenotic Crohnā€™s Disease

    Get PDF

    DynCNET: a negotiation and coordination protocol for dynamic task assignment.

    Get PDF
    Task assignment in Multi-Agent Systems is a complex coordination problem, especially in systems that operate under dynamic and changing conditions. Adaptive task assignment is used to handle these dynamic and changing circumstances. This technical document describes an adaptive task assignment protocol, DynCNET which is an extension of the Contract Net Protocol. In this document, the DynCNET protocol will be build step by step, starting from the Contract Net protocol. We will add dynamic task assignment, synchronization of abort messages and scope handling. The final result will be the DynCNET protocol with support for synchronization of abort messages and scope handling.

    How to get multi-agent systems accepted in industry?

    Get PDF

    Ants constructing rule-based classifiers.

    Get PDF
    Classifiers; Data; Data mining; Studies;

    Optimizing agents with genetic programming : an evaluation of hyper-heuristics in dynamic real-time logistics

    Get PDF
    Dynamic pickup and delivery problems (PDPs) require online algorithms for managing a fleet of vehicles. Generally, vehicles can be managed either centrally or decentrally. A common way to coordinate agents decentrally is to use the contract-net protocol (CNET) that uses auctions to allocate tasks among agents. To participate in an auction, agents require a method that estimates the value of a task. Typically this method is an optimization algorithm. Recently, hyper-heuristics has been proposed for automated design of heuristics. Two properties of automatically designed heuristics are particularly promising: 1) a generated heuristic computes quickly, it is expected therefore that hyper-heuristics heuristics perform especially well for urgent problems, and 2) by using simulationbased evaluation, hyper-heuristics can learn from the past and can therefore create a ā€˜rule of thumbā€™ that anticipates situations in the future. In the present paper we empirically evaluate whether hyper-heuristics, more specifically genetic programming (GP), can be used to improve agents decentrally coordinated via CNET. We compare several GP settings and compare the resulting heuristic with existing centralized and decentralized algorithms on a dynamic PDP dataset with varying levels of dynamism, urgency, and scale. The results indicate that the evolved heuristic always outperforms the optimization algorithm in the decentralized MAS and often outperforms the centralized optimization algorithm. Our paper shows that designing MASs using genetic programming is an effective way to obtain competitive performance compared to traditional operational research approaches. These results strengthen the relevance of decentralized agent based approaches in dynamic logistics
    • ā€¦
    corecore